具有小修和一般型更换策略的多状态退化系统A multi-state degraded system with minimal repairs and the replacement policy in general distribution
王丽花;岳德权;张静;刘海涛;
摘要(Abstract):
为了解决多状态退化系统问题,利用马尔可夫过程理论及补充变量法建立了微分方程组,并采用Laplace变换法及其反演方法,研究了带有小修和一般型更换维修策略的模型。假定系统连续退化成许多离散状态,在系统退化到失效状态时,实施更换函数为一般分布的更换策略,使系统修复如新;系统在每个退化状态可能随机失效,然后得到小修,得到了可靠度和首次故障前的平均时间的表达式,可用度和首次故障前的平均时间的Laplace变换式等重要的可靠性指标。该成果具有一定的理论和实际意义。
关键词(KeyWords): 多状态系统;退化;小修;更换策略;可靠性指标;多状态退化系统;马尔可夫过程;补充变量法
基金项目(Foundation): 国家自然科学基金资助项目(71071133)
作者(Authors): 王丽花;岳德权;张静;刘海涛;
参考文献(References):
- [1]Barlow S E,Wu A S.Coherent systems with multi-state components[J].Mathematics of Operations Research,1978,3(11):275-81.
- [2]Neweihi E E,Proschan F,Sethuraman.Multistate coherent systems[J].Journal of Applied Probability,1978,15(12):675-88.
- [3]Ross S M.Multi-valued state component systems[J].The Annals of Probability,1979,7(2):379-83.
- [4]Billinton R,Allan R.Reliability evaluation of power systems[M].London:Pitman Advanced Publishing Program,1990,443-473.
- [5]Xue J,Yang K.Dynamic reliability analysis of coherent multi-state systems[J].IEEE Transactions on Reliability1995,44:683–8.
- [6]Liu Y W,Kapur K C.Reliability measures for dynamic multistate non-repairable systems and their applications to system performance evaluation[J].IIE Transactions2006,38(6):511–20.
- [7]Zuo M J,Tian Z G.Performance evaluation of generalized multi-state k-out-of-n systems[J].IEEE Transactions on Reliability,2006,55:319-327..
- [8]Soro I W,Nourelfath M,Ait Kadi D.Performance evaluation of multi-state degraded systems with minimal repairs and imperfect preventive maintenance[J].Reliability Engineering and System Safety,2010,95:65-69.
- [9]曹晋华,程侃.可靠性数学引论[M].北京:科学出版社,1986,192-196.
- [10]孟宪云,刘海涛,李芳,等.两个不同型部件冷贮备系统的几何过程模型[J].辽宁工程技术大学学报:自然科学版,2011,30(1):146-149.