井下直流电机车弓网电弧识别方法Pantograph-catenary arc identification method for underground DC locomotive
郭凤仪;侯星雨;黄捷康;高洪鑫;阮俊义;倪志超;
摘要(Abstract):
为获得煤矿井下电机车运行过程中产生的直流弓网电弧的检测方法,开展了不同工况条件下的直流弓网电弧实验,对电流信号进行了混沌特性分析,通过相空间重构获得电弧电流混沌特性序列,使用流形学习降维实现混沌特性的可视化,利用降维后序列作为直流弓网电弧识别特征,并采用极限学习机对直流弓网电弧进行识别.结果表明:该方法能够有效识别直流电机车弓网电弧.
关键词(KeyWords): 直流弓网电弧;相空间重构;混沌特性分析;流形学习;极限学习机
基金项目(Foundation): 国家自然科学基金(51674136);; 辽宁省“兴辽英才”项目(XLYC1802110)
作者(Authors): 郭凤仪;侯星雨;黄捷康;高洪鑫;阮俊义;倪志超;
参考文献(References):
- [1]王智勇,郭凤仪,冯晓丽等.基于电流信号特征的弓网电弧识别方法[J].电工技术学报,2018,33(1):82-91.WANG Zhiyong,GUO Fengyi,FENG Xiaoli,et al.Recognition method of pantograph arc based on current signal characteristics[J].Electrical Engineering magazine,2018,33(1):82-91.
- [2]郭凤仪,王兴宇,王智勇,等.滑动速度对弓网电弧形态的影响[J].辽宁工程技术大学学报(自然科学版),2018,37(3):621-626.GUO Fengyi,WANG Xingyu,WANG Zhiyong,et al.The influence of sliding velocity on arc shape of pantograph and catenary[J].Journal of Liaoning Technical University(Natural Science),2018,37(3):621-626.
- [3] WEI W,WU J,GAO G,et al.Study on pantograph arcing in a laboratory simulation system by high-speed photography[J].IEEE Transactions on Plasma Science,2016,44(10):2 438-2 445.
- [4] GAO G,HAO J,WEI W,et al.Dynamics of pantograph-catenary arc during the pantograph lowering process[J].IEEE Transactions on Plasma Science,2016,44(11):2 715-2 723.
- [5]郭凤仪,管俊,冯晓丽,等.弓网离线电弧辐射电场噪声研究[J].辽宁工程技术大学学报(自然科学版),2017,36(9):971-975.GUO Fengyi,GUAN Jun,FENG Xiaoli,et al.Research on the electric field noise radiated from pantograph-catenary offline arc[J].Journal of Liaoning Technical University(Natural Science),2017,36(9):971-975.
- [6]王溢斐.城市轨道交通弓网离线电弧特性研究[J].电气化铁道,2017,28(5):22-25+30.WANG Yifei.Researches on characteristics of arcing due to contact-loss between pantograph and catenary for urba[J].Electric Railway, 2017,28(5):22-25+30.
- [7]杨茂,吕天峰,季本明.混沌理论在电力系统负荷预测中应用综述[J].东北电力大学学报,2015,35(3):18-21.YANG Mao,LU Tianfeng,JI Benming.A review of chaos theory in power system load prediction[J].Journal of Northeast Electric Power University,2015,35(3):18-21.
- [8] TAKENS F.Detecting strange attractors in turbulence[J].Dynamical Systems and Turbulence,Warwick 1980(898):366-381.
- [9]王育飞,付玉超,孙路,等.基于混沌-RBF神经网络的光伏发电功率超短期预测模型[J].电网技术,2018,42(4):1 110-1 116.WANG Yufei,FU Yuchao,SUN Lu,et al.Ultra-short term prediction model of photovoltaic output power based on chaos-rbf neural network[J].Power System Technology,2018,42(04):1 110-1 116.
- [10]韩敏,王一颉.含噪声混沌信号最大Lyapuno指数计算[J].控制理论与应用,2008(05):898-900.HAN Min,WANG Yijie.Computation of the largest Lyapunov exponent in noisy chaotic signal[J].Control Theory&Applications,2008(5):898-900.
- [11]张海龙,闵富红,王恩荣.关于Lyapunov指数计算方法的比较[J].南京师范大学学报(工程技术版),2012,12(1):5-9.ZHANG Hailong,MIN Fuhong,WANG Enrong.The comparison for Lyapunov exponents calculation methods[J].Journal of Nanjing Normal University(Engineering and Technology Edition),2012,12(1):5-9.
- [12]张田昊.数据降维算法研究及其应用[D].上海:上海交通大学,2008.
- [13] HUANG G,SONG S,Gupta J N D,et al.Semi-supervised and unsupervised extreme learning machines[J].IEEE Transactions on Cybernetics,2014,44(12):2405-24
- [14] HUANG G B,WANG D H,LAN Y.Extreme learning machines:a survey[J].International Journal of Machine Learning and Cybernetics,2011,2(2):107-122.