回采工作面瓦斯涌出量预测模型Prediction model of gas emission from mining face
邵良杉;王振;
摘要(Abstract):
针对回采工作面瓦斯涌出量预测问题,采用因子分析降低高相关性指数的维数,将提取的2个主要因子与煤层倾角、工作面长度、相邻煤层之间的距离、相邻煤层的厚度作为输入数据,采用“试错法”和回归方法确定BP神经网络隐层节点个数,利用改进遗传算法优化BP神经网络的阈值与权重,构建回采工作面瓦斯涌出量预测模型.利用15组测量数据对预测模型进行训练,3组数据用作预测的测试样本.研究结果表明:基于因子分析与改进遗传算法优化BP神经网络(FA-IGA-BP)的回采工作面瓦斯涌出量预测模型最大相对误差为3.794%,平均误差为2.945%,该模型在处理高维数据时具有预测精度高,泛化能力强的特点,可以有效地预测瓦斯涌出量.
关键词(KeyWords): 回采工作面;瓦斯涌出量;因子分析;改进遗传算法;BP神经网络
基金项目(Foundation): 国家自然科学基金(71771111)
作者(Authors): 邵良杉;王振;
参考文献(References):
- [1]毕建武,贾进章,刘丹.基于SPSS多元回归分析的回采工作面瓦斯涌出量预测[J].安全与环境学报,2013,13(5):183-186.BI Jianwu,JIA Jinzhang,LIU Dan. Forecast of the gas emission quantity of the working face based on the SPSS multiple regression analysis[J].Journal of Safety and Environment,2013,13(5):183-186.
- [2]王书琴.基于深度学习的瓦斯时间序列预测与异常检测[D].徐州:中国矿业大学,2018:1-11.
- [3]吕伏,梁冰,孙维吉,等.基于主成分回归分析法的回采工作面瓦斯涌出量预测[J].煤炭学报,2012,37(1):113-116.LYU Fu,LIANG Bing,SUN Weiji,et al.Gas emission quantity prediction of working face based on principal component regression analysis method[J].Journal of China Coal Society,2012(1):113-116.
- [4]万仁保,罗招贤.基于灰色神经网络算法的煤矿瓦斯涌出量预测模型研究[J].煤炭技术,2012,31(11):54-56.WAN Renbao,LUO Zhaoxian.Research on coal gas emission forecasting based on grey model neural network algorithm[J].Coal Technology,2012,31(11):54-56.
- [5]付华,姜伟,单欣欣.基于耦合算法的煤矿瓦斯涌出量预测模型研究[J].煤炭学报,2012,37(4):654-658.FU Hua,JIANG Wei,SHAN Xinxin.Study on coupling algorithm on coal mine gas emission forecast model[J].Journal of China Coal Society,2012,37(4),654-658.
- [6]施式亮,李润求,罗文柯.基于EMD-PSO-SVM的煤矿瓦斯涌出量预测方法及应用[J].中国安全科学学报,2014,24(7):43-49.SHI Shiliang,LI Runqiu,LUO Wenke.Method for predicting coal mine gas emission based on EMD-PSO-SVM and its application[J].China Safety Science Journal,2014,24(7):43-49.
- [7]温廷新,孙红娟,张波,等.煤与瓦斯突出预测的QGA-LSSVM模型[J].中国安全生产科学技术,2015,11(5):5-12.WEN Tingxin,SUN Hongjuan,ZHANG Bo,et al.Predicting model for outburst of coal and gas based on QGA-LSSVM[J].Journal of Safety Science and Technology,2015,11(5):5-12.
- [8]林海飞,高帆,严敏,等.煤层瓦斯含量PSO-BP神经网络预测模型及其应用[J].中国安全科学学报,2020,30(9):80-87.LIN Haifei,GAO Fan,YAN Min,et al.Study on PSO-BP neural network prediction method of coal seam gas content and its application[J].China Safety Science Journal,2020,30(9):80-87.
- [9]邵良杉,马寒,温廷新.因子分析与支持向量机相结合的煤炭自燃预测[J].辽宁工程技术大学学报(自然科学版),2014,33(4):433-436.SHAO Liangshan,MA Han,WEN Tingxin. Coal spontaneous combustion prediction model of support vector machine combined with factor analysis[J].Journal of Liaoning Technical University(Natural Science),2014,33(4):433-436.
- [10]柴岩,周艳钊.遗传算法的爬山法改进[J].辽宁工程技术大学学报(自然科学版),2014,33(7):996-999.CHAI Yan,ZHOU Yanzhao.Improved genetic algorithm based on climbing[J].Journal of Liaoning Technical University(Natural Science),2014,33(7):996-999.
- [11]王江荣.基于遗传算法模糊多元线性回归分析的瓦斯涌出量预测模型[J].工矿自动化,2013,39(12):34-38.WANG Jiangrong.Gas emission prediction model based on genetic algorithm and fuzzy multivariate linear regression analysis[J].Industry and Mine Automation,2013,39(12):34-38.
- [12]高科,刘剑,刘玉姣.回采工作面瓦斯涌出量遗传投影寻踪回归预测[J].中国安全科学学报,2015,25(3):96-101.GAO Ke,LIU Jian,LIU Yujiao.Gas emission prediction of working face based on GA-projection pursuit regression[J].China Safety Science Journal,2015,25(3):96-101.
- [13]马庆国.管理统计[M].北京:科学出版社,2008:308-335.
- [14]曹博,白刚,李辉.基于PCA-GA-BP神经网络的瓦斯含量预测分析[J].中国安全生产科学技术,2015,11(5):84-90.CAO Bo,BAI Gang,LI Hui.Prediction of gas content based on PCA-GA-BP neural network[J].Journal of Safety Science and Technology,2015,11(5):84-90.
- [15]程加堂,艾莉,熊燕.基于IQPSO-BP算法的煤矿瓦斯涌出量预测[J].矿业安全与环保,2016,43(4):38-41.CHENG Jiatang,AI Li,XIONG Yan.Coal mine gas emission prediction based on IQPSO-BP algorithm[J].Mining Safety&Environmental Protection,2016,43(4):38-41.
- [16]位爱竹,王凯,伍永生.基于GA-BP混合算法的煤与瓦斯突出强度预测研究[J].矿业安全与环保,2006,33(4):4-6.WEI Aizhu,WANG Kai,WU Yongsheng.Predictive study on coal and gas outburst intensity based on GA-BP compound algorithm[J].Mining Safety&Environmental Protection,2006,33(4):4-6.
- [17]韩义波.基于GA-ELM的瓦斯涌出量检测[J].煤矿安全,2015,46(4):166-169.HAN Yibo.Gas emission prediction based on GA-ELM[J].Safety in Coal Mines,2015,46(4):166-169.
- [18]李冬,彭苏萍,杜文凤,等.煤层瓦斯突出危险区综合预测方法[J].煤炭学报,2018,43(2):466-472.LI Dong,PENG Suping,DU Wenfeng,et al.Comprehensive prediction method of coal seam gas outburst danger zone[J].Journal of China Coal Society,2018,43(2):466-472.
- [19]牟全斌.我国煤与瓦斯突出区域预测方法研究现状及展望[J].煤炭科学技术,2014,42(11):59-63.MOU Quanbin.Study status and prospects for regional prediction methods of coal and gas outburst in China[J].Coal Science and Technology,2014,42(11):59-63.
- [20]何俊,刘林兵,唐一举.基于线性二次指数平滑法的瓦斯含量预测[J].煤炭科学技术,2014,42(12):48-50.HE Jun,LIU Linbing,TANG Yiju.Gas content prediction based on linear double exponential smooth method[J].Coal Science and Technology,2014,42(12):48-50.