基于停机时间的可修串联系统的维修更换策略Maintenance and replacement policy for a series repairable system based on downtime
孟宪云;付钦慧;李芳;张建龙;刘海涛;
摘要(Abstract):
为了求得k个不同型部件串联可修系统的平均停机时间,提出了一种维修更换模型。假设系统中每个部件维修后均不能"修复如新",部件每次失效时延迟修理的概率为1-pi(i=1,2,…,k),利用几何过程、α-幂过程和更新过程理论,在更换策略M=(N1,N2,…,Nk)下得出系统经长期运行单位时间内期望费用和平均停机时间的表达式,并以费用率为约束条件,以停机时间为目标函数建立优化模型;给出数值例子,用MATLAB验证了该模型的合理性。仿真试验表明:存在最优更换策略M*,满足费用率约束条件下使得平均停机时间最短。
关键词(KeyWords): 延迟修理;串联系统;几何过程;幂过程;更新报酬定理;维修更换模型;平均停机时间;仿真试验
基金项目(Foundation): 全国统计科研计划基金资助项目(2010LC33);; 河北省教育厅基金资助项目(2007323);; 河北省自然科学基金资助项目(A200500301)
作者(Authors): 孟宪云;付钦慧;李芳;张建龙;刘海涛;
参考文献(References):
- [1]Khalil Z S,Availability of series system with various hut-offrules[J].IEEE Trans.Reliability R,1985,34:187-189.
- [2]Chao M T,Fu J C,The reliability of a large series system under Markovstructure[J].Advanced Applied Probability,1991,23:894-908.
- [3]Lam Yeh,Geometric processes and replacement problem[J].ACTAMathematic Applicate Sinica,1988,4(4):366-377.
- [4]Lam Yeh,A note on the optimal replacement problem[J].AdvancedApplied Probability,1988,20:479-482.
- [5]Braun W J,Li W,Zhao Y Q.Some theoretical properties of geometricandα-series process[J].Communications in Statistics Theory andMethods,2008,37:1483-1496.
- [6]Yuan Lin Zhang.A geometric process repair model for a repairablesystem with delayed repair[J].Computers and Mathematics withApplications,2008(55):1629-1643.
- [7]Guan Jun Wang,Yuan Lin Zhang.An optimal replacement policy for atwo-component series system assuming geometric process[J].Computers and Mathematics with Applications,2003,54:192-202.
- [8]Yuan Lin Zhang,Guan Jun Wang.A geometric process repair model fora series repairable system with k dissimilar components[J].AppliedMathematical Modelling,2007,31:1997-2007.
- [9]ZHOU Yu xia.Monotonicity of the optimal replacement policy for theα-power process maintenance model[J].Journal of SichuanUniversity,2007,44(2):221-224.
- [10]李继祥,高建强,于振林.基于可靠性分析的近海工程结构分析与评价[J].辽宁工程技术大学学报:自然科学版,2001,20(2):162-165.
- [11]谭林,蒲婷,郭波.基于可用度的N部件可修串联系统最优更换策略[J].兵工学报,2009,30(8):1103-1107.